39 research outputs found

    The Consistency of Fermi-LAT Observations of the Galactic Center with a Millisecond Pulsar Population in the Central Stellar Cluster

    Full text link
    I show that the spectrum and morphology of a recent Fermi-LAT observation of the Galaxy center are consistent with a millisecond pulsar population in the nuclear Central stellar cluster of the Milky Way. The Galaxy Center gamma-ray spectrum is consistent with the spectrum of four of eight globular clusters that have been detected in the gamma-ray. A dark matter annihilation interpretation cannot be ruled out, though no unique features exist that would require this conclusion.Comment: 5 pages, 1 figure; v3: matches version to appear in JCA

    Chasing the identification of ASCA Galactic Objects (ChIcAGO): An X-ray survey of unidentified sources in the galactic plane. I : Source sample and initial results

    Get PDF
    We present the Chasing the Identification of ASCA Galactic Objects (ChIcAGO) survey, which is designed to identify the unknown X-ray sources discovered during the ASCA Galactic Plane Survey (AGPS). Little is known about most of the AGPS sources, especially those that emit primarily in hard X-rays (2-10 keV) within the Fx 10-13 to 10-11 erg cm -2 s-1 X-ray flux range. In ChIcAGO, the subarcsecond localization capabilities of Chandra have been combined with a detailed multiwavelength follow-up program, with the ultimate goal of classifying the >100 unidentified sources in the AGPS. Overall to date, 93 unidentified AGPS sources have been observed with Chandra as part of the ChIcAGO survey. A total of 253 X-ray point sources have been detected in these Chandra observations within 3â€Č of the original ASCA positions. We have identified infrared and optical counterparts to the majority of these sources, using both new observations and catalogs from existing Galactic plane surveys. X-ray and infrared population statistics for the X-ray point sources detected in the Chandra observations reveal that the primary populations of Galactic plane X-ray sources that emit in the Fx 10-13 to 10-11 erg cm -2 s-1 flux range are active stellar coronae, massive stars with strong stellar winds that are possibly in colliding wind binaries, X-ray binaries, and magnetars. There is also another primary population that is still unidentified but, on the basis of its X-ray and infrared properties, likely comprises partly Galactic sources and partly active galactic nuclei.Peer reviewedSubmitted Versio

    A Systematic Study on Energy Dependence of Quasi-Periodic Oscillation Frequency in GRS 1915+105

    Full text link
    Systematically studying all the RXTE/PCA observations for GRS 1915+105 before November 2010, we have discovered three additional patterns in the relation between Quasi-Periodic Oscillation (QPO) frequency and photon energy, extending earlier outcomes reported by Qu et al. (2010). We have confirmed that as QPO frequency increases, the relation evolves from the negative correlation to positive one. The newly discovered patterns provide new constraints on the QPO models

    Chandra Monitoring of the Candidate Anomalous X-ray Pulsar AX J1845.0-0258

    Get PDF
    The population of clearly identified anomalous X-ray pulsars has recently grown to seven, however, one candidate anomalous X-ray pulsar (AXP) still eludes re-confirmation. Here, we present a set of seven Chandra ACIS-S observations of the transient pulsar AX J1845.0-0258, obtained during 2003. Our observations reveal a faint X-ray point source within the ASCA error circle of AX J1845.0-0258's discovery, which we designate CXOU J184454.6-025653 and tentatively identify as the quiescent AXP. Its spectrum is well described by an absorbed single-component blackbody (kT~2.0 keV) or power law (Gamma~1.0) that is steady in flux on timescales of at least months, but fainter than AX J1845.0-0258 was during its 1993 period of X-ray enhancement by at least a factor of 13. Compared to the outburst spectrum of AX J1845.0-0258, CXOU J184454.6-025653 is considerably harder: if truly the counterpart, then its spectral behaviour is contrary to that seen in the established transient AXP XTE J1810-197, which softened from kT~0.67 keV to ~0.18 keV in quiescence. This unexpected result prompts us to examine the possibility that we have observed an unrelated source, and we discuss the implications for AXPs, and magnetars in general.Comment: 4 pages, 3 figures. To be published in the proceedings of the conference "Isolated Neutron Stars: from the Interior to the Surface" (April 24-28, 2006, London, UK), eds. D. Page, R. Turolla, & S. Zan

    Fast Transition between High-soft and Low-soft States in GRS 1915+105: Evidence for a Critically Viscous Accretion Flow

    Get PDF
    We present the results of a detailed analysis of RXTE observations of class ω\omega which show an unusual state transition between high-soft and low-soft states in the microquasar GRS 1915+105. Out of about 600 pointed RXTE observations, the source was found to exhibit such state transition only on 16 occasions. An examination of the RXTE/ASM data in conjunction with the pointed observations reveals that these events appeared as a series of quasi-regular dips in two stretches of long duration (about 20 days during each occasions) when hard X-ray and radio flux were very low. The X-ray light curve and color-color diagram of the source during these observations are found to be different from any reported so far. The duration of these dips is found to be of the order of a few tens of seconds with a repetition time of a few hundred seconds. The transition between these dips and non-dips which differ in intensity by a factor of ~ 3.5, is observed to be very fast (~ a few seconds). It is observed that the low-frequency narrow QPOs are absent in the power density spectrum (PDS) of the dip and non-dip regions of class ω\omega and the PDS is a power law in 0.1 - 10 Hz frequency range. There is a remarkable similarity in the spectral and timing properties of the source during the dip and non-dip regions in these set of observations. These properties of the source are distinctly different from those seen in the observations of other classes. This indicates that the basic accretion disk structure during both dip and non-dip regions of class ω\omega is similar, but differ only in intensity. To explain these observations, we invoke a model in which the viscosity is very close to critical viscosity and the shock wave is weak or absent.Comment: Replaced with correct figures, Jour. of Astrophysics and Astronomy (accepted

    On Hoyle-Narlikar-Wheeler mechanism of vibration energy powered magneto-dipole emission of neutron stars

    Full text link
    We revisit the well-known Hoyle-Narlikar-Wheeler proposition that neutron star emerging in the magnetic-flux-conserving process of core-collapse supernova can convert the stored energy of Alfven vibrations into power of magneto-dipole radiation. We show that the necessary requirement for the energy conversion is the decay of internal magnetic field. In this case the loss of vibration energy of the star causes its vibration period, equal to period of pulsating emission, to lengthen at a rate proportional to the rate of magnetic field decay. These prediction of the model of vibration powered neutron star are discussed in juxtaposition with data on pulsating emission of magnetars whose radiative activity is generally associated with the decay of ultra strong magnetic field.Comment: Accepted for publication in Astrophysics & Space Scienc

    Tkachenko waves, glitches and precession in neutron star

    Full text link
    Here I discuss possible relations between free precession of neutron stars, Tkachenko waves inside them and glitches. I note that the proposed precession period of the isolated neutron star RX J0720.4-3125 (Haberl et al. 2006) is consistent with the period of Tkachenko waves for the spin period 8.4s. Based on a possible observation of a glitch in RX J0720.4-3125 (van Kerkwijk et al. 2007), I propose a simple model, in which long period precession is powered by Tkachenko waves generated by a glitch. The period of free precession, determined by a NS oblateness, should be equal to the standing Tkachenko wave period for effective energy transfer from the standing wave to the precession motion. A similar scenario can be applicable also in the case of the PSR B1828-11.Comment: 6 pages, no figures, accepted to Ap&S

    Search for Pairs of Isolated Radio Pulsars - Components in Disrupted Binary Systems

    Full text link
    We have developed a method for analyzing the kinematic association of isolated relativistic objects - possible remnants of disrupted close binary systems. We investigate pairs of fairly young radio pulsars with known proper motions and estimated distances (dispersion measures) that are spaced no more than 2-3 kpc apart. Using a specified radial velocity distribution for these objects, we have constructed 100-300 thousand trajectories of their possible motion in the Galactic gravitational field on a time scale of several million years. The probabilities of their close encounters at epochs consistent with the age of the younger pulsar in the pair are analyzed. When these probabilities exceed considerably their reference values obtained by assuming a purely random encounter between the pulsars under consideration, we conclude that the objects may have been gravitationally bound in the past. As a result, we have detected six pulsar pairs (J0543+2329/J0528+2200, J1453-6413/J1430-6623, J2354+6155/J2321+6024, J1915+1009/J1909+1102, J1832-0827/J1836-1008, and J1917+1353/J1926+1648) that are companions in disrupted binary systems with a high probability. Estimates of their kinematic ages and velocities at binary disruption and at the present epoch are provided

    Recent Progress on Anomalous X-ray Pulsars

    Get PDF
    I review recent observational progress on Anomalous X-ray Pulsars, with an emphasis on timing, variability, and spectra. Highlighted results include the recent timing and flux stabilization of the notoriously unstable AXP 1E 1048.1-5937, the remarkable glitches seen in two AXPs, the newly recognized variety of AXP variability types, including outbursts, bursts, flares, and pulse profile changes, as well as recent discoveries regarding AXP spectra, including their surprising hard X-ray and far-infrared emission, as well as the pulsed radio emission seen in one source. Much has been learned about these enigmatic objects over the past few years, with the pace of discoveries remaining steady. However additional work on both observational and theoretical fronts is needed before we have a comprehensive understanding of AXPs and their place in the zoo of manifestations of young neutron stars.Comment: 10 pages, 6 figures; to appear in proceedings of the conference "Isolated Neutron Stars: From the Interior to the Surface" eds. S. Zane, R. Turolla, D. Page; Astrophysics & Space Science in pres

    Electron-positron Annihilation Lines and Decaying Sterile Neutrinos

    Full text link
    If massive sterile neutrinos exist, their decays into photons and/or electron-positron pairs may give rise to observable consequences. We consider the possibility that MeV sterile neutrino decays lead to the diffuse positron annihilation line in the Milky Way center, and we thus obtain bounds on the sterile neutrino decay rate Γe≄10−28\Gamma_e \ge 10^{-28} s−1^{-1} from relevant astrophysical/cosmological data. Also, we expect a soft gamma flux of 1.2×10−4−9.7×10−41.2 \times 10^{-4}-9.7 \times 10^{-4} ph cm−2^{-2} s−1^{-1} from the Milky Way center which shows up as a small MeV bump in the background photon spectrum. Furthermore, we estimate the flux of active neutrinos produced by sterile neutrino decays to be 0.02−0.10.02-0.1 cm−2^{-2} s−1^{-1} passing through the earth.Comment: Accepted for publication in Astrophysics & Space Scienc
    corecore